
ReproZip Documentation
Release 0.7

Fernando Chirigati, Remi Rampin, Juliana Freire, and Dennis Shasha

September 11, 2015

Contents

1 Contents 3
1.1 Why ReproZip? . 3
1.2 Installation . 3
1.3 Using reprozip . 7
1.4 Using reprounzip . 11
1.5 Frequently Asked Questions . 17
1.6 Developer’s Guide . 21

2 Links 25

i

ii

ReproZip Documentation, Release 0.7

Welcome to ReproZip’s documentation!

ReproZip is a tool aimed at simplifying the process of creating reproducible experiments from command-line exe-
cutions. It tracks operating system calls and creates a package that contains all the binaries, files, and dependencies
required to run a given command on the author’s computational environment. A reviewer can then extract the experi-
ment in his own environment to reproduce the results, even if the environment has a different operating system from
the original one.

Currently, ReproZip can only pack experiments that originally run on Linux.

Concretely, ReproZip has two main steps:

• The packing step happens in the original environment, and generates a compendium of the experiment, so as
to make it reproducible. ReproZip tracks operating system calls while executing the experiment, and creates a
.rpz file, which contains all the necessary information and components for the experiment.

• The unpacking step reproduces the experiment from the .rpz file. ReproZip offers different unpacking meth-
ods, from simply decompressing the files in a directory to starting a full virtual machine, and they can be used
interchangeably from the same packed experiment. It is also possible to automatically replace input files and
command-line arguments. Note that this step is also available on Windows and Mac OS X, since ReproZip can
unpack the experiment in a virtual machine for further reproduction.

Contents 1

http://vida-nyu.github.io/reprozip/

ReproZip Documentation, Release 0.7

2 Contents

CHAPTER 1

Contents

1.1 Why ReproZip?

Reproducibility is a core component of the scientific process: it helps researchers all around the world to verify
the results and also to build on them, allowing science to move forward. In natural science, long tradition requires
experiments to be described in enough detail so that they can be reproduced by researchers around the world. The
same standard, however, has not been widely applied to computational science, where researchers often have to rely
on plots, tables, and figures included in papers, which loosely describe the obtained results.

The truth is computational reproducibility can be very painful to achieve for a number of reasons. Take the author-
reviewer scenario of a scientific paper as an example. Authors must generate a compendium that encapsulates all
the inputs needed to correctly reproduce their experiments: the data, a complete specification of the experiment and
its steps, and information about the originating computational environment (OS, hardware architecture, and library
dependencies). Keeping track of this information manually is rarely feasible: it is both time-consuming and error-
prone. First, computational environments are complex, consisting of many layers of hardware and software, and the
configuration of the OS is often hidden. Second, tracking library dependencies is challenging, especially for large
experiments. If authors did not plan for reproducibility since the beginning of the project, reproducibility is drastically
hampered.

For reviewers, even with a compendium in their hands, it may be hard to reproduce the results. There may be no
instructions about how to execute the code and explore it further; the experiment may not run on his operating system;
there may be missing libraries; library versions may be different; and several issues may arise while trying to install
all the required dependencies, a problem colloquially known as dependency hell.

ReproZip helps alleviate these problems by allowing the user to easily capture all the necessary components in a single,
distributable package. Also, the tool makes it easier to reproduce an experiment by providing different unpacking
methods and interfaces that avoids the need to install all the required dependencies and that makes it possible to run
the experiment under different inputs.

1.2 Installation

ReproZip is available as open source, released under the Revised BSD License. The tool is comprised of two com-
ponents: reprozip (for the packing step) and reprounzip (for the unpack step). Additional plugins are also provided
for reprounzip: reprounzip-vagrant, which unpacks the experiment in a Vagrant virtual machine, and reprounzip-
docker, which unpacks the experiment in a Docker container; more plugins may be developed in the future (and,
of course, you are free to roll your own). In our website, you can find links to our PyPI packages and our GitHub
repository.

In the following, you will find installation instructions for Linux, Mac OS X, and Windows. ReproZip is also available
for the Anaconda Python distribution.

3

http://en.wikipedia.org/wiki/Dependency_hell
http://vida-nyu.github.io/reprozip/
https://github.com/ViDA-NYU/reprozip
https://github.com/ViDA-NYU/reprozip

ReproZip Documentation, Release 0.7

1.2.1 Linux

For Linux distributions, both reprozip and reprounzip components are available.

Required Software Packages

Python 2.7.3 or greater is recommended to run ReproZip. Older versions should allow reprounzip to work, but some
features will not be available 1. If you don’t have Python on your machine, you can get it from python.org 2; you
should prefer a 2.x release to a 3.x one. You will also need the pip installer.

Besides Python and pip, each component or plugin to be used may have additional dependencies that you need to
install (if you do not have them already installed in your environment), as described below:

Component
/ Plugin

Required Software Packages

reprozip SQLite 3, Python headers 4, a working C compiler
reprounzip None
reprounzip-
vagrant

Python headers 4 5, a working C compiler 5, Vagrant 1.1+, VirtualBox

reprounzip-
docker

Docker

Installing reprozip

To install the reprozip component, simply run the following command:

$ pip install reprozip

To update the software, use the flag -U:

$ pip install -U reprozip

Installing reprounzip

To install the reprounzip component, simply run the following command:

$ pip install reprounzip

To update the software, use the flag -U:

$ pip install -U reprounzip

The additional plugins for reprounzip can also be installed using the same command:

$ pip install reprounzip-docker reprounzip-vagrant

Alternatively, you can install reprounzip with all the available plugins using:

$ pip install reprounzip[all]

1 reprounzip graph will not work due to Python bug 13676 related to sqlite3.
2 On Debian and Debian-based, you can use sudo apt-get install python.
3On Debian and Debian-based, you can use sudo apt-get install libsqlite3-dev.
4On Debian and Debian-based, you can use sudo apt-get install python-dev.
5Required to build PyCrypto.

4 Chapter 1. Contents

https://www.python.org/
https://pip.pypa.io/en/latest/installing.html
http://www.sqlite.org/
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.docker.com/
http://bugs.python.org/issue13676
https://www.dlitz.net/software/pycrypto/

ReproZip Documentation, Release 0.7

1.2.2 Mac OS X

For Mac OS X, only the reprounzip component is available.

Binaries

An installer containing Python 2.7, reprounzip, and all the plugins can be downloaded from GitHub.

Required Software Packages

Python 2.7.3 or greater is recommended to run ReproZip. Older versions should allow reprounzip to work, but some
features will not be available 6. If you don’t have Python on your machine, you can get it from python.org; you should
prefer a 2.x release to a 3.x one. You will also need the pip installer.

Besides Python and pip, each component or plugin to be used may have additional dependencies that you need to
install (if you do not have them already installed in your environment), as described below:

Component
/ Plugin

Required Software Packages

reprounzip None
reprounzip-
vagrant

Python headers 7 8, a working C compiler 7 8, Vagrant 1.1+, VirtualBox

reprounzip-
docker

Docker

See also:

Why does reprounzip-vagrant installation fail with error unknown argument: ‘-mno-fused-madd’ on Mac OS X?

Installing reprounzip

First, be sure to upgrade setuptools:

$ pip install -U setuptools

To install the reprounzip component, simply run the following command:

$ pip install reprounzip

To update the software, use the flag -U:

$ pip install -U reprounzip

The additional plugins for reprounzip can also be installed using the same command:

$ pip install reprounzip-docker reprounzip-vagrant

Alternatively, you can install reprounzip with all the available plugins using:

$ pip install reprounzip[all]

6 reprounzip graph will not work due to Python bug 13676 related to sqlite3.
7This is usually provided by installing Xcode (in the Mac App Store) and the Command Line Developer Tools; instructions on installing the

latter may depend on your Mac OS X version (some information on StackOverflow here).
8Required to build PyCrypto.

1.2. Installation 5

https://github.com/ViDA-NYU/reprozip/releases/latest
https://www.python.org/
https://pip.pypa.io/en/latest/installing.html
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.docker.com/
http://bugs.python.org/issue13676
http://stackoverflow.com/questions/9329243/xcode-4-4-and-later-install-command-line-tools?answertab=active#tab-top
https://www.dlitz.net/software/pycrypto/

ReproZip Documentation, Release 0.7

1.2.3 Windows

For Windows, only the reprounzip component is available.

Binaries

A 32-bit installer containing Python 2.7, reprounzip, and all the plugins can be downloaded from GitHub.

Required Software Packages

Python 2.7.3 or greater is recommended to run ReproZip. Older versions should allow reprounzip to work, but some
features will not be available 9. If you don’t have Python on your machine, you can get it from python.org; you should
prefer a 2.x release to a 3.x one. You will also need the pip installer.

Besides Python and pip, each component or plugin to be used may have additional dependencies that you need to
install (if you do not have them already installed in your environment), as described below:

Component
/ Plugin

Required Software Packages

reprounzip None
reprounzip-
vagrant

PyCrypto 10, Vagrant 1.1+, VirtualBox

reprounzip-
docker

Docker

See also:

Why does reprounzip-vagrant installation fail with error Unable to find vcvarsall.bat on Windows?

Installing reprounzip

To install the reprounzip component, simply run the following command:

$ pip install reprounzip

To update the software, use the flag -U:

$ pip install -U reprounzip

The additional plugins for reprounzip can also be installed using the same command:

$ pip install reprounzip-vagrant
$ pip install reprounzip-docker

Alternatively, you can install reprounzip with all the available plugins using:

$ pip install reprounzip[all]

1.2.4 Anaconda

reprozip and reprounzip can also be installed on the Anaconda Python distribution, from Binstar:

9 reprounzip graph will not work due to Python bug 13676 related to sqlite3.
10A working C compiler is required to build PyCrypto. For installation without building from source, please see this page.

6 Chapter 1. Contents

https://github.com/ViDA-NYU/reprozip/releases/latest
https://www.python.org/
https://pip.pypa.io/en/latest/installing.html
https://www.dlitz.net/software/pycrypto/
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.docker.com/
https://store.continuum.io/cshop/anaconda
http://bugs.python.org/issue13676
http://stackoverflow.com/questions/11405549/how-do-i-install-pycrypto-on-windows

ReproZip Documentation, Release 0.7

$ conda install -c https://conda.binstar.org/vida-nyu reprozip reprounzip reprounzip-docker reprounzip-vagrant

Note, however, that reprozip is only available for Linux.

1.3 Using reprozip

The reprozip component is responsible for packing an experiment, which is done in three steps: tracing the experiment,
editing the configuration file (if necessary), and creating the reproducible package. Each of these steps is explained in
more details below. Please note that reprozip is only available for Linux distributions.

1.3.1 Tracing an Experiment

First, reprozip needs to trace the operating system calls used by the experiment, so as to identify all the necessary
information for its future re-execution, such as binaries, files, library dependencies, and environment variables.

The following command is used to trace a command line, or a run, used by the experiment:

$ reprozip trace <command-line>

where <command-line> is the command line. By running this command, reprozip executes <command-line> and
uses ptrace to trace all the system calls issued, storing them in an SQLite database.

Multiple runs can also be traced and combined in a single package by using the flag --continue, or -c, for all the
runs except the first one:

$ reprozip trace --continue <command-line>

Note that the final package will be able to reproduce any of the runs, and files shared by multiple runs are only stored
once.

By default, if the operating system is Debian or Debian-based (e.g.: Ubuntu), reprozip will also try to automatically
identify the distribution packages from which the files come, using the available package manager of the system. This
is useful to provide more detailed information about the dependencies, as well as to further help when reproducing
the experiment. However, note that the trace command can take some time doing that after the experiment finishes,
depending on the number of file dependencies that the experiment has. To disable this feature, users may use the flag
--dont-identify-packages:

$ reprozip trace --dont-identify-packages <command-line>

The database, together with a configuration file (see below), are placed in a directory named .reprozip-trace,
created under the path where the reprozip trace command was issued.

1.3.2 Editing the Configuration File

The configuration file, which can be found in .reprozip-trace/config.yml, contains all the information
necessary for creating the experiment package. This file is generated by the tracer and drives the packing step.

It is very likely that you do not need to modify this file, as the automatically-generated one should be sufficient to
create a working package. However, in some cases, you may want to edit it prior to the creation of the package to
add or remove files used by your experiment. This can be particularly useful, for instance, to remove big files that can
be obtained elsewhere when reproducing the experiment, so as to keep the size of package small, and also to remove
sensitive information that the experiment may use. The configuration file can also be used to edit the main command
line, to add or remove environment variables, and to edit information regarding input/output files.

1.3. Using reprozip 7

http://en.wikipedia.org/wiki/Dpkg

ReproZip Documentation, Release 0.7

The first part of the configuration file gives general information with respect to the experiment and its runs, including
command lines, environment variables, working directory, and machine information. Also, each run has a unique
identifier (given by id) that is consistently used for packing and unpacking purposes:

Run info
version: <reprozip-version>
runs:
Run 0
- id: <run-id>

architecture: <machine-architecture>
argv: <command-line-arguments>
binary: <command-line-binary>
distribution: <linux-distribution>
environ: <environment-variables>
exitcode: <exit-code>
gid: <group-id>
hostname: <machine-hostname>
system: <system-kernel>
uid: <user-id>
workingdir: <working-directory>

Run 1
- id: ...
...

If necessary, users may change command line parameters by editing argv, and add or remove environment variables
by editing environ. Users may also give a more meaningful and user-friendly identifier for a run by changing id.
Other attributes should not be changed in general.

The next section brings information about input and output files, including their original paths and which runs read
and/or wrote them. These are the files that reprozip identified as the main input or result of the experiment, which
reprounzip will later be able to replace and extract from the experiment when reproducing it. You may add, remove,
or edit these files in case reprozip fails in recognizing any important information, as well as give meaningful names to
them by editing name:

Inputs are files that are only read by a run; reprounzip can replace these
files on demand to run the experiment with custom data.
Outputs are files that are generated by a run; reprounzip can extract these
files from the experiment on demand, for the user to examine.
The name field is the identifier the user will use to access these files.
inputs_outputs:

- name: <file-identifier>
path: <path-to-file>
read_by_runs: <run-ids>
written_by_runs: <run-ids>

- name: ...
...

Note that you can prevent reprozip from identifying which files are input or output by using the
--dont-find-inputs-outputs flag in the reprozip trace command.

Note that you can prevent reprozip from guessing which files are inputs or outputs using the
--dont-find-inputs-outputs flag.

See also:

Why doesn’t reprozip identify my input/output file?

The next section in the configuration file lists all the files to be packed. If the software dependencies were identified
by the package manager of the system during the reprozip trace command, they will be organized in software

8 Chapter 1. Contents

ReproZip Documentation, Release 0.7

packages and listed under packages; otherwise, file dependencies will be listed under other_files:

packages:
- name: <package-name>
version: <package-version>
size: <package-size>
packfiles: <include-package>
files:

Total files used: <used-files-size>
Installed package size: <package-size>
<files-list>

- name: ...
...

other_files:
<files-list>

The attribute packfiles can be used to control whether a software package will be packed: its default value is
true, but users may change it to false to inform reprozip that the corresponding software package should not be
included. To remove a file that was not identified as part of a package, users can simply remove it from the list under
other_files.

Warning: Note that if a software package is requested not to be included, the reprounzip component will try
to install it from a package manager when unpacking the experiment. If the software version from the package
manager is different from (and incompatible with) the one used by the experiment, the experiment may not be
reproduced correctly.

See also:

Why does reprounzip run fail with no such file or directory or similar?

Last, users may add file patterns under additional_patterns to include other files that they think it will be
useful for a future reproduction. As an example, the following would add everything under /etc/apache2/ and
all the Python files of all users from LXC containers (contrived example):

additional_patterns:
- /etc/apache2/**
- /var/lib/lxc/*/rootfs/home/**/*.py

Note that users can always reset the configuration file to its initial state by running the following command:

$ reprozip reset

Warning: When editing a configuration file, make sure your changes are as restrictive as possible, modifying
only the necessary information. Removing important information and changing the structure of the file may cause
issues while creating the package or unpacking the experiment.

1.3.3 Creating a Package

After tracing all the runs from the experiment and optionally editing the configuration file, the experiment package
can be created by using the following command:

$ reprozip pack <package-name>

where <package-name> is the name given to the package. This command generates a .rpz file in the current direc-
tory, which can then be sent to others so that the experiment can be reproduced. For more information regarding the
unpacking step, please see Using reprounzip.

1.3. Using reprozip 9

ReproZip Documentation, Release 0.7

Note that, by using reprozip pack, files will be copied from your environment to the package; as such, you should
not change any file that the experiment used before packing it, otherwise the package will contain different files from
the ones the experiment used when it was originally traced.

Warning: Before sending your package to others, it is advisable to test it and ensure that the reproduction of the
experiment works.

1.3.4 Further Considerations

Packing Multiple Command Lines

As mentioned before, ReproZip allows multiple runs (i.e., command lines) to be traced and included in the same
package. Alternatively, users can create a simple script that runs all the command lines, and pass that to reprozip
trace. However, in this case, there will be no flexibility in choosing a single run to be reproduced, since the entire
script will be re-executed.

Note that this flexibility has the caveat that users may reproduce the runs in a different order than the one originally
used while tracing. If the order is important for the reproduction (e.g.: each run represents a step in a dataflow), please
make sure to inform the correct reproduction order to whoever wants to replicate the experiment. This can also be
obtained by running reprounzip graph; please refer to Creating a Provenance Graph for more information.

Packing GUI and Interactive Tools

ReproZip is able to pack GUI tools. Additionally, there is no restriction in packing interactive experiments (i.e., ex-
periments that require input from users). Note, however, that if entering something different can make the experiment
load additional dependencies, the experiment will probably fail when reproduced on a different machine.

Capturing Connections to Servers

When reproducing an experiment that communicates with a server, the experiment will try to connect to the same
server, which may or may not fail depending on the status of the server at the moment of the reproduction. However,
if the experiment uses a local server (e.g.: database) that the user has control over, this server can also be captured,
together with the experiment, to ensure that the connection will succeed. Users should create a script to:

• start the server,

• execute the experiment, and

• stop the server,

and use reprozip to trace the script execution, rather than the experiment itself. In this way, ReproZip is able to capture
the local server as well, which ensures that the server will be alive at the time of the reproduction. Alternatively, users
can trace each run individually and include them all in the same package, but since one may reproduce individual runs,
this does not ensure that the server will be alive when reproducing the experiment.

Excluding Sensitive and Third-Party Information

ReproZip automatically tries to identify log and temporary files, removing them from the package, but the configura-
tion file should be edited to remove any sensitive information that the experiment uses, or any third-party file/software
that should not be distributed. Note that the ReproZip team is not responsible for personal and non-authorized files
that may get distributed in a package; users should double-check the configuration file and their package before sending
it to others.

10 Chapter 1. Contents

ReproZip Documentation, Release 0.7

Identifying Output Files

The reprozip component tries to automatically identify the main output files generated by the experiment during
the trace command to provide useful interfaces for users during the unpacking step. However, if the experiment
creates unique names for its outputs every time it is executed (e.g.: names with current date and time), the reprounzip
component will not be able to correctly detect these; it assumes that input and output files do not have their path names
changed between different executions. In this case, handling output files will fail. It is recommended that users modify
their experiment (or use a wrapper script) to generate a symbolic link (with a fixed name) that always points to the
latest result, and use that as the output file’s path in the configuration file (under the inputs_outputs section).

1.4 Using reprounzip

While reprozip is responsible for tracing and packing an experiment, reprounzip is the component used for the un-
packing step. reprounzip is distributed with three unpackers for Linux (reprounzip directory, reprounzip chroot, and
reprounzip installpkgs), but more unpackers are supported by installing additional plugins; some of these plugins are
compatible with different environments as well (e.g.: reprounzip-vagrant and reprounzip-docker).

1.4.1 Inspecting a Package

Showing Package Information

Before unpacking an experiment, it is often useful to have further information with respect to its package. The
reprounzip info command allows users to do so:

$ reprounzip info <package>

where <package> corresponds to the experiment package (i.e., the .rpz file).

The output of this command has three sections. The first section, Pack information, contains general information about
the experiment package, including size and total number of files:

----- Pack information -----
Compressed size: <compressed-size>
Unpacked size: <unpacked-size>
Total packed paths: <number>

The next section, Metadata, contains information about dependencies (i.e., software packages), machine architecture
from the packing environment, and experiment runs:

----- Metadata -----
Total software packages: <total-number-software-packages>
Packed software packages: <number-packed-software-packages>
Architecture: <original-architecture> (current: <current-architecture>)
Distribution: <original-operating-system> (current: <current-operating-system>)
Runs:

<run-id>: <command-line>
<run-id>: <command-line>
...

Note that, for Architecture and Distribution, the command shows information with respect to both the original envi-
ronment (i.e., the environment where the experiment was packed) and the current one (i.e., the environment where
the experiment is to be unpacked). This helps users understand the differences between the environments in order to
provide a better guidance in choosing the most appropriate unpacker.

If the verbose mode is used, more detailed information on the runs is provided:

1.4. Using reprounzip 11

ReproZip Documentation, Release 0.7

$ reprounzip -v info <package>
...
----- Metadata -----
...
Runs:

<run-id>: <command-line>
wd: <working-directory>
exitcode: <exit-code>

<run-id>: <command-line>
wd: <working-directory>
exitcode: <exit-code>

...

Last, the section Unpackers shows which of the installed reprounzip unpackers can be successfully used in the current
environment:

----- Unpackers -----
Compatible:

...
Incompatible:

...
Unknown:

...

Compatible lists the unpackers that can be used in the current environment, while Incompatible lists the unpackers
that are not supported in the current environment. When using the verbose mode, an additional Unknown list shows
the installed unpackers that may not work. As an example, for an experiment originally packed on Ubuntu and a user
reproducing it on Windows, the vagrant unpacker (available through the reprounzip-vagrant plugin) is compatible,
but installpkgs is not; vagrant may also be listed under Unknown if vagrant is not in PATH (e.g.: if Vagrant is not
installed).

Showing Input and Output Files

The reprounzip showfiles command can be used to list the input and output files defined for the experiment.
These files are identified by an id, which is either chosen by ReproZip or set in the configuration file before creating
the .rpz file:

$ reprounzip showfiles package.rpz
Input files:

program_config
ipython_config
input_data

Output files:
rendered_image
logfile

Using the flag -v shows the complete path of each of these files in the experiment environment:

$ reprounzip -v showfiles package.rpz
Input files:

program_config (/home/user/.progrc)
ipython_config (/home/user/.ipython/profile_default/ipython_config.py)
input_data (/home/user/experiment/input.bin)

Output files:
rendered_image (/home/user/experiment/output.png)
logfile (/home/user/experiment/log.txt)

12 Chapter 1. Contents

https://www.vagrantup.com/

ReproZip Documentation, Release 0.7

This command is particularly useful if you want to replace an input file with your own, or to get and save an output
file for further examination. Please refer to Managing Input and Output Files for more information.

Creating a Provenance Graph

ReproZip also allows users to generate a provenance graph related to the experiment execution. This graph shows
the relationships between files, library dependencies, and binaries during the execution. To generate such a graph, the
reprounzip graph command should be used:

$ reprounzip graph graph-file.dot package.rpz
$ dot -Tpng graph-file.dot -o image.png

where graph-file.dot corresponds to the graph, outputted in the DOT language. You can use Graphviz to load and
visualize the graph.

Note: If you are using a Python version older than 2.7.3, this feature will not be available due to Python bug 13676
related to sqlite3.

1.4.2 Unpackers

From the same .rpz package, reprounzip allows users to set up the experiment for reproduction in several ways by
the use of different unpackers. Unpackers are plugins that have general interface and commands, but that can also
provide their own command-line syntax and options. Thanks to the decoupling between packing and unpacking steps,
.rpz files from older versions of ReproZip can be used with new unpackers.

The reprounzip tool comes with three unpackers that are only compatible with Linux (reprounzip directory,
reprounzip chroot, and reprounzip installpkgs). Additional unpackers, such as reprounzip
vagrant and reprounzip docker, can be installed separately. Next, each unpacker is described in more details;
for more information on how to use an unpacker, please refer to Using an Unpacker.

The directory Unpacker: Unpacking as a Plain Directory

The directory unpacker (reprounzip directory) allows users to unpack the entire experiment (including li-
brary dependencies) in a single directory, and to reproduce the experiment directly from that directory. It does so
by automatically setting up environment variables (e.g.: PATH, HOME, and LD_LIBRARY_PATH) that point the
experiment execution to the created directory, which has the same structure as in the packing environment.

Please note that, although this unpacker is easy to use and does not require any privilege on the reproducing machine,
it is unreliable since the directory is not isolated in any way from the remainder of the system. In particular, should
the experiment use absolute paths, they will hit the host system instead. However, if the system has all the required
packages (see The installpkgs Unpacker: Installing Software Packages), and the experiment’s files are addressed with
relative paths, the use of this unpacker should not cause any problems.

Warning: reprounzip directory provides no isolation of the filesystem, as mentioned before. If the
experiment uses absolute paths, either provided by you or hardcoded in the experiment, they will point outside
the unpacked directory. Please be careful to use relative paths in the configuration and command line if you want
this unpacker to work with your experiment. Other unpackers are more reliable in this regard.

Note: reprounzip directory is automatically distributed with reprounzip.

See also:

Why does reprounzip directory fail with IOError?

1.4. Using reprounzip 13

http://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/
http://bugs.python.org/issue13676

ReproZip Documentation, Release 0.7

The chroot Unpacker: Providing Isolation with the chroot Mechanism

In the chroot unpacker (reprounzip chroot), similar to reprounzip directory, a directory is cre-
ated from the experiment package; however, a full system environment is also built, which can then be run with
chroot(2), a Linux mechanism that changes the root directory / for the experiment to the experiment directory.
Therefore, this unpacker addresses the limitation of the directory unpacker and does not fail in the presence of hard-
coded absolute paths. Note as well that it does not interfere with the current environment since the experiment is
isolated in that single directory.

Warning: Do not try to delete the experiment directory manually; always use reprounzip chroot
destroy. If /dev is mounted inside, you will also delete your system’s device pseudo-files (these can be
restored by rebooting or running the MAKEDEV script).

Note: Although chroot offers pretty good isolation, it is not considered completely safe: it is possible for processes
owned by root to “escape” to the outer system. We recommend not running untrusted programs with this plugin.

Note: reprounzip chroot is automatically distributed with reprounzip.

The installpkgs Unpacker: Installing Software Packages

By default, ReproZip identifies if the current environment already has the required software packages for the experi-
ment, then using the installed ones for reproduction. For the non-installed software packages, it uses the dependencies
packed in the original environment and extracted under the experiment directory.

Users may also let ReproZip try and install all the dependencies of the experiment on their machine by using the
installpkgs unpacker (reprounzip installpkgs). This unpacker currently works for Debian and Debian-based
operating systems only (e.g.: Ubuntu), and uses the dpkg package manager to automatically install all the required
software packages directly on the current machine, thus interfering with your environment.

To install the required dependencies, the following command should be used:

$ reprounzip installpkgs <package>

Users may use flag y or assume-yes to automatically confirm all the questions from the package manager; flag missing
to install only the software packages that were not originally included in the experiment package (i.e.: software
packages excluded in the configuration file); and flag summary to simply provide a summary of which software
packages are installed or not in the current environment without installing any dependency.

Warning: Note that the package manager may not install the same software version as required for running the
experiment, and if the versions are incompatible, the reproduction may fail.

Note: This unpacker is only used to install software packages. Users still need to use either reprounzip
directory or reprounzip chroot to extract the experiment and execute it.

Note: reprounzip installpkgs is automatically distributed with reprounzip.

The vagrant Unpacker: Building a Virtual Machine

The vagrant unpacker (reprounzip vagrant) allows an experiment to be unpacked and reproduced using a
virtual machine created through Vagrant. Therefore, the experiment can be reproduced in any environment supported

14 Chapter 1. Contents

http://en.wikipedia.org/wiki/Dpkg
https://www.vagrantup.com/

ReproZip Documentation, Release 0.7

by this tool, i.e., Linux, Mac OS X, and Windows. Note that the plugin assumes that Vagrant is installed in the current
environment.

In addition to the commands listed in Using an Unpacker, you can use suspend to save the virtual machine state to
disk, and setup/start to restart a previously-created machine:

$ reprounzip vagrant suspend <path>
$ reprounzip vagrant setup/start <path>

Note: This unpacker is not distributed with reprounzip; it is a separate package that should be installed before using
(see reprounzip-vagrant plugin).

The docker Unpacker: Building a Docker Container

ReproZip can also extract and reproduce experiments as Docker containers. The docker unpacker (reprounzip
docker) is responsible for such integration and it assumes that Docker is already installed in the current environment.

Note: This unpacker is not distributed with reprounzip; it is a separate package that should be installed before using
(see reprounzip-docker plugin).

1.4.3 Using an Unpacker

Once you have chosen (and installed) an unpacker for your machine, you can use it to setup and run a packaged
experiment. An unpacker creates an experiment directory in which the working files are placed; these can be either
the full filesystem (for directory or chroot unpackers) or other content (e.g.: a handle on a virtual machine for the
vagrant unpacker); for the chroot unpacker, it might have mount points. To make sure that you free all resources and
that you do not damage your environment, you should always use the destroy command to delete the experiment
directory, not just merely delete it manually. See more information about this command below.

All the following commands need to state which unpacker is being used (i.e., reprounzip directory for the
directory unpacker, reprounzip chroot for the chroot unpacker, reprounzip vagrant for the vagrant un-
packer, and reprounzip docker for the docker unpacker). For the purpose of this documentation, we will use the
vagrant unpacker; to use a different one, just replace vagrant in the following with the unpacker of your interest.

Setting Up an Experiment Directory

To create the directory where the execution will take place, the setup command should be used:

$ reprounzip vagrant setup <package> <path>

where <path> is the directory where the experiment will be unpacked, i.e., the experiment directory.

Note that, once this is done, you should only remove <path> with the destroy command described below: deleting
this directory manually might leave files behind, or even damage your system through bound filesystems.

The other unpacker commands take the <path> argument; they do not need the original package for the reproduction.

Note: Most unpackers assume an Internet connection for the setup command and will be downloading required
software from the Internet. Make sure that you have an Internet connection, and that there is no firewall blocking the
access.

1.4. Using reprounzip 15

https://pypi.python.org/pypi/reprounzip-vagrant/
https://www.docker.com/
https://pypi.python.org/pypi/reprounzip-docker/

ReproZip Documentation, Release 0.7

Reproducing the Experiment

After creating the directory, the experiment can be reproduced by issuing the run command:

$ reprounzip vagrant run <path>

which will execute the experiment inside the experiment directory. Users may also change the command line of the
experiment by using --cmdline:

$ reprounzip vagrant run <path> --cmdline <new-command-line>

where <new-command-line> is the modified command line. This is particularly useful to reproduce and test the
experiment under different input parameter values. Using --cmdline without an argument only prints the original
command line.

If the package contains multiple runs (separate commands that were packed together), you need to provide the id of
the run to be reproduced:

$ reprounzip vagrant run <path> <run-id>
$ reprounzip vagrant run <path> <run-id> --cmdline <new-command-line>

If the experiment involves running a GUI tool, the graphical interface can be enable by using --enable-x11:

$ reprounzip vagrant run <path> --enable-x11

which will forward the X connection from the experiment to the X server running on your machine. In this case, make
sure you have a running X server.

Removing the Experiment Directory

The destroy command will unmount mounted paths, destroy virtual machines, free container images, and delete
the experiment directory:

$ reprounzip vagrant destroy <path>

Make sure you always use this command instead of simply deleting the directory manually.

Managing Input and Output Files

When tracing an experiment, ReproZip tries to identify which are the input and output files of the experiment. This
can also be adjusted in the configuration file before packing. If the unpacked experiment has such files, ReproZip
provides some commands to manipulate them.

First, you can list these files using the showfiles command:

$ reprounzip showfiles <path>
Input files:

program_config
ipython_config
input_data

Output files:
rendered_image
logfile

To replace an input file with your own, reprounzip, you can use the upload command:

$ reprounzip vagrant upload <path> <input-path>:<input-id>

16 Chapter 1. Contents

ReproZip Documentation, Release 0.7

where <input-path> is the new file’s path and <input-id> is the input file to be replaced (from showfiles). This
command overwrites the original path in the environment with the file you provided from your system. To restore the
original input file, the same command, but in the following format, should be used:

$ reprounzip vagrant upload <path> :<input-id>

Running the showfiles command shows what the input files are currently set to:

$ reprounzip showfiles <path>
Input files:

program_config
(original)

ipython_config
C:\Users\Remi\Documents\ipython-config

...

In this example, the input program_config has not been changed (the one bundled in the .rpz file will be used), while
the input ipython_config has been replaced.

After running the experiment, all the generated output files will be located under the experiment directory. To copy an
output file from this directory to another desired location, use the download command:

$ reprounzip vagrant download <path> <output-id>:<output-path>

where <output-id> is the output file to be copied (from showfiles) and <output-path> is the desired destination of
the file. If no destination is specified, the file will be printed to stdout:

$ reprounzip vagrant download <path> <output-id>:

Note that the upload command takes the file id on the right side of the colon (meaning that the path is the origin, and
the id is the destination), while the download command takes it on the left side (meaning that the id is the origin,
and the path is the destination).

See also:

Why can’t reprounzip get my output files after reproducing an experiment?

1.4.4 Further Considerations

Reproducing Multiple Execution Paths

The reprozip component can only guarantee that reprounzip will successfully reproduce the same execution path that
the original experiment followed. There is no guarantee that the experiment won’t need a different set of files if you
use a different configuration; if some of these files were not packed into the .rpz package, the reproduction may fail.

1.5 Frequently Asked Questions

1.5.1 Why doesn’t reprozip identify my input/output file?

ReproZip uses some heuristics to identify an input or output file. However, this is only intended to be a starting point:
you should check the configuration file and edit the inputs_outputs section if necessary; giving readable names to
input/output files also helps during reproduction. Please refer to Editing the Configuration File for more information.

1.5. Frequently Asked Questions 17

ReproZip Documentation, Release 0.7

1.5.2 Why can’t reprounzip get my output files after reproducing an experiment?

This is probably the case where these output files do not have a fixed path name. It is common for experiments to
dynamically choose where the outputs should be written, e.g.: by putting the date and time in the filename. However,
ReproZip uses filenames in the output_files section of the configuration file to detect those when reproducing the
experiment: if the name of the output file when reproducing is different from when it was originally packed, ReproZip
cannot detect these as output files, and therefore, cannot get them through the download command.

The easiest way to solve this issue is to write a simple bash script that runs your experiment and either renames outputs
or creates symbolic links to them with known filenames. You can then trace this script (instead of the actual entry-point
of your experiment) and specify these fixed path names in the output_files section of the configuration file.

1.5.3 Why aren’t any files packed when tracing a daemon?

If you are starting the daemon via the service tool, it might be calling init over a client/server connection. In this
situation, ReproZip will successfully pack the client, but anything the server (init) does will not be captured.

However, you can still trace the binary or a non-systemd init script directly. For example, instead of:

reprozip trace service mysql start

you can trace either the init script:

reprozip trace /etc/init.d/mysql start

or the binary:

reprozip trace /usr/bin/mysqld

Note that, if you choose to trace the binary, you need to figure out the right command line options to use. Also, make
sure that systemd is not called, since ReproZip and systemd currently do not get along well.

1.5.4 Can ReproZip pack a client-server scenario?

Yes! However, note that only tracing the client will not capture the full story: reproducibility is better achieved (and
guaranteed) if the server is traced as well. Having said that, currently, ReproZip can only trace local servers: if in your
experiment the server is remote (i.e., running in another machine), ReproZip cannot capture it. In this case, you can
trace the client, and the experiment can only be reproduced if the remote server is still running at the moment of the
reproduction.

The easiest way to pack a local client-server experiment is to write a script that starts the server, runs your client(s),
and then shuts down the server; ReproZip can then trace this script. See Further Considerations When Packing for
more information.

1.5.5 Can ReproZip pack a database?

ReproZip can trace a database server; however, because of the format it uses to store data (and also because different
databases work differently), it might be hard for you to control exactly what data will be packed. You probably want
to pack all the data from the databases/tables that your experiment uses, and not just the pages that were touched while
tracing the execution. This can be done by inspecting the configuration file and adding the relevant patterns that cover
the data, e.g.: for MySQL:

additional_patterns:
- /var/lib/mysql/**

18 Chapter 1. Contents

ReproZip Documentation, Release 0.7

Also note that ReproZip does not currently save the state of the files. Therefore, if your experiment modifies a database,
ReproZip will pack the already modified data (not the one before tracing the experiment execution).

1.5.6 Can ReproZip pack interactive tools?

Yes! The reprounzip component should have no problems with experiments that interact with the user through the
terminal. If your experiment runs until it receives a Ctrl+C signal, that is fine as well: ReproZip will not interfere
unless you press Ctrl+C twice, stopping the experiment.

GUI tools are also supported; see Can ReproZip pack graphical tools? for more information.

1.5.7 Can ReproZip pack graphical tools?

Yes! On Linux, graphical display is handled by the X server, to which applications can connect as clients to display
their windows and components, and to get user input. Most unpackers now support forwarding the X connection from
the experiment to the X server running on the unpacking machine. Note that you will need a running X server to make
this work, such as Xming for Windows or XQuartz for Mac OS X. If you are running Linux, chances are that an X
server is already configured and running.

X support is not enabled by default; to enable it, use the flag --enable-x11 in the run command of your preferred
unpacker.

1.5.8 How can I access the generated system or virtual machine directly?

If you are running reprounzip vagrant, you can connect to the Vagrant virtual machine by running vagrant
ssh or connecting via SSH to the destination listed by vagrant ssh-config (often localhost:2222). These
commands should be run from inside the directory created by the unpacker.

If you are running reprounzip docker, you can inspect the Docker container directly by using docker, or
start a new one based on the image created by reprounzip; all images generated by ReproZip are named with the
reprounzip_ prefix. For more information on how to inspect and create Docker containers, please refer to the
Docker documentation.

For reprounzip chroot and reprounzip directory, the filesystem is in the root subdirectory under the
experiment path.

Warning: Note that, in the generated system, only the files needed for running the unpacked experiment are
guaranteed to work correctly. This means that you may have only parts of a software distribution (required to run
the experiment), but not the software in its entirety (unless the complete software was included in the configuration
file while packing). For example, you may only have a few Python files that the experiment needs, but not the
ones required to run Python interactively or install new libraries. Therefore, do not expect that all the software
components will run smoothly when acessing the system.
The utilities from the base system might also not work correctly (if they are not part of the experiment) because
reprounzip overwrites the libraries with the ones from the original environment. In the worst-case scenario, the
dynamic linker or the shell may not be usable. Note that some unpackers install /bin/busybox, which you may
find helpful.

1.5.9 What if my experiment runs on a distributed environment?

ReproZip cannot trace across multiple machines. You could trace each component separately, but ReproZip has no
support yet to setup these multiple machines in the right way from the multiple .rpz files. In particular, you will
probably need to set up the same network for the components to talk to each other.

1.5. Frequently Asked Questions 19

http://sourceforge.net/projects/xming/
http://xquartz.macosforge.org/
https://docs.docker.com/

ReproZip Documentation, Release 0.7

1.5.10 Why does reprounzip-vagrant installation fail with error Unable to find
vcvarsall.bat on Windows?

Python is trying to build PyCrypto, one of the dependencies of reprounzip-vagrant, but there is no C compiler available.
You can either build PyCrypto from source, or follow the instructions on this website to get the non-official binaries.

1.5.11 Why does reprounzip-vagrant installation fail with error unknown
argument: ’-mno-fused-madd’ on Mac OS X?

This is an issue with the Apple LLVM compiler, which treats unrecognized command-line options as errors. As a
workaround, before installing reprounzip-vagrant, run the following:

$ sudo -s
$ export CFLAGS="-Wno-error=unused-command-line-argument-hard-error-in-future"

Then re-install reprounzip-vagrant:

$ pip install -I reprounzip-vagrant

Or use the following command in case you want all the available plugins:

$ pip install -I reprounzip[all]

1.5.12 Why are there warnings from requests/urllib3?

You may be seeing warnings like this:

/usr/local/lib/python2.7/dist-packages/requests/packages/urllib3/util/ssl_.py:79:
InsecurePlatformWarning: A true SSLContext object is not available. This
prevents urllib3 from configuring SSL appropriately and may cause certain SSL
connections to fail. For more information, see
https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning.

Most Python versions are insecure, because they do not validate SSL certificates. Python 2.7.9 and later shouldn’t be
affected, but if you see InsecurePlatformWarning, you can run pip install requests[security],
which should bring in the missing components.

1.5.13 Why does the experiment fail with Error: Can’t open display: :0?

The experiment probably involves running a GUI tool. The reprounzip component supports GUI tools, but it is not
enabled by default; add the flag --enable-x11 to the run command to enable it. See Can ReproZip pack graphical
tools? for more information.

1.5.14 Why does reprounzip directory fail with IOError?

The directory unpacker does not provide any isolation from the filesystem: if the experiment being reproduced use
absolute paths, these will point outside the experiment directory, and files may not be found. Make sure that the
experiment does not use any absolute paths: if only relative paths are used internally and in the command line,
reprounzip directory should work.

20 Chapter 1. Contents

https://www.dlitz.net/software/pycrypto/
http://stackoverflow.com/questions/11405549/how-do-i-install-pycrypto-on-windows

ReproZip Documentation, Release 0.7

1.5.15 Why does reprounzip fail with DistributionNotFound errors?

You probably have some plugins left over from a previous installation. Be sure to upgrade or remove outdated plugins
when you upgrade reprounzip.

The following command might help:

pip install -U reprounzip[all]

1.5.16 Why does reprounzip show running in chroot, ignoring request?

This message comes from the systemd client, which will probably not work with ReproZip. In this case, the experiment
should be re-packed without using systemd (see this question for more information).

1.5.17 Why does reprounzip vagrant setup fail to resolve a host address?

When running reprounzip vagrant setup, if you get an error similar to this:

==> default: failed: Temporary failure in name resolution.
==> default: wget: unable to resolve host address ...

there is probably a firewall blocking the Vagrant VM to have Internet connection; the VM needs Internet connection
to download required software for setting up the experiment for you. Please make sure that your anti-virus/firewall is
not causing this issue.

1.5.18 Why does reprounzip run fail with no such file or directory or sim-
ilar?

This error message may have different reasons, but it often means that a specific version of a library or a dynamic
linker is missing.

If you are requesting reprounzip to install software using the package manager (by running reprounzip
installpkgs), it is possible that the software packages from the package manager are not compatible with the
ones required by the experiment. You may want to try using the packed files directly to ensure compatibility. Also,
note that, while packing, the user can choose not to include some packages, meaning that reprounzip will have to
install the one from the package manager, which, again, is not guaranteed to be compatible. In this case, try contacting
the author of the ReproZip package.

When using reprounzip vagrant and reprounzip docker, ReproZip tries to detect the closest base system
for unpacking the experiment. You may also want to try a different base system that you think it is closer to the original
one by using the option --base-image when running these unpackers.

1.6 Developer’s Guide

1.6.1 General Development Information

Development happens on GitHub; bug reports and feature requests are welcome. If you are interested in giving us a
hand, please do not hesitate to submit a pull request there.

Continuous testing is provided by Travis CI. Note that ReproZip supports both Python 2 and 3. Test coverage is not
very high due to a lot of operations that are difficult to cover on Travis (Vagrant VMs and Docker containers cannot
be used over there).

1.6. Developer’s Guide 21

https://github.com/ViDA-NYU/reprozip
https://travis-ci.org/ViDA-NYU/reprozip

ReproZip Documentation, Release 0.7

If you have any questions or need help with the development of an unpacker or plugin, please use our development
mailing-list at reprozip-dev@vgc.poly.edu.

1.6.2 Writing Unpackers

ReproZip is divided into two steps. Packing gives a generic package containing the trace SQLite database, the YAML
configuration file (listing the paths, packages, and metadata such as command line, environment variables, and in-
put/output files), and actual files. In the second step, a package can be turned into a runnable form by reprounzip. This
decoupling allows the reproducer to select the unpacker of his/her desire, and also means that when a new unpacker is
released, users will be able to use it on their old packages.

The ViDA group maintains different unpackers: the defaults ones (directory and chroot), vagrant (distributed
as reprounzip-vagrant) and docker (distributed as reprounzip-docker). However, the interface is such that new
unpackers can be easily added. While taking a look at the “official” unpackers’ source is probably a good idea, this
page gives some useful information about how they work.

ReproZip Pack Format (.rpz)

An .rpz file is a tar.gz archive that contains two directories: METADATA, which contains meta-information from
reprozip, and DATA, which contains the actual files that were packed and that will be unpacked to the target directory
for reproducing the experiment.

The METADATA/config.yml file is in the same format as the configuration file generated by reprozip, but without
the additional_patterns section (at this point, it has already been expanded to the actual list of files while
packing).

The METADATA/trace.sqlite3 file is the original trace generated by the C tracer and maintained in a SQLite
database; it contains all the information about the experiment, in case the configuration file is insufficient in some
aspect. This file is used, for instance, by the graph unpacker, so that it can recover the exact hierarchy of processes,
together with the executable images they execute and the files they access (with the time and mode of these accesses).

See also:

Trace Database Schema

Structure

An unpacker is a Python module. It can be distributed separately or be part of a bigger distribution, given that it is de-
clared in that distribution’s setup.py as an entry_point to be registered with pkg_resources (see setuptools’ dynamic
discovery of services and plugins section). You should declare a function as entry_point reprounzip.unpackers.
The name of the entry_point (before =) will be the reprounzip subcommand, and the value is a callable that will get
called with the argparse.ArgumentParser object for that subcommand.

The package reprounzip.unpackers is a namespace package, so you should be able to add your own unpackers
there if you want to. Please remember to put the correct code in the __init__.py file (which you can copy from
here) so that namespace packages work correctly.

The modules reprounzip.common, reprounzip.utils, and reprounzip.unpackers.common con-
tain utilities that you might want to use (make sure to list reprounzip as a requirement in your setup.py).

Example of setup.py:

setup(name='reprounzip-vagrant',
namespace_packages=['reprounzip', 'reprounzip.unpackers'],
install_requires=['reprounzip>=0.4'],
entry_points={

22 Chapter 1. Contents

https://pypi.python.org/pypi/reprounzip-vagrant
https://pypi.python.org/pypi/reprounzip-docker
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
http://docs.python.org/library/argparse.html#argparse.ArgumentParser
https://github.com/ViDA-NYU/reprozip/blob/master/reprounzip/reprounzip/unpackers/__init__.py

ReproZip Documentation, Release 0.7

'reprounzip.unpackers': [
'vagrant = reprounzip.unpackers.vagrant:setup'
The setup() function sets up the parser for reprounzip vagrant

]
}
...

)

Usual Commands

If possible, you should try to follow the same command names that the official unpackers use, which are:

• setup: to create the experiment directory and set everything for execution;

• run: to reproduce the experiment;

• destroy: to bring down all that setup and to prepare and delete the experiment directory safely;

• upload and download: to replace input files in the experiment, and to get the output files for further exami-
nation, respectively.

If these commands can be broken down into different steps that you want to expose to the user, or if you provide
completely different actions from these defaults, you are free to add them to the parser as well. For instance, the
vagrant unpacker exposes setup/start, which starts or resumes the virtual machine, and destroy/vm, which
stops and deallocates the virtual machine but leaves the template for possible reuse.

A Note on File Paths

ReproZip supports Python 2 and 3, is portable to different operating systems, and is meant to accept a wide variety
of configurations so that it is compatible with most experiments out there. Even trickier, reprounzip-vagrant needs
to manipulate POSIX filenames on Windows, e.g.: in the unpacker. Therefore, the rpaths library is used everywhere
internally. You should make sure to use the correct type of path (either PosixPath or Path) and to cast these to
the type that Python functions expect, keeping in mind 2/3 differences (most certainly either filename.path or
str(filename)).

Experiment Directory Format

Unpackers usually create a directory with everything necessary to later run the experiment. This directory is created
by the setup operation, cleaned up by destroy, and is the argument to every command. For example, with
reprounzip-vagrant:

$ reprounzip vagrant setup someexperiment.rpz mydirectory
$ reprounzip vagrant upload mydirectory /tmp/replace.txt:input_text

Unpackers unpack the config.yml file to the root of that directory, and keep status information in a .reprounzip
file, which is a dict in pickle format. Following the same structure will allow the showfiles command, as well
as FileUploader and FileDownloader classes, to work correctly. Please try to follow this structure.

Signals

Since version 0.4.1, reprounzip has signals that can be used to hook in plugins, although no such plugin has been
released at this time. To ensure that these work correctly when using your unpacker, you should emit them when
appropriate. The complete list of signals is available in signal.py.

1.6. Developer’s Guide 23

https://github.com/remram44/rpaths
http://rpaths.remram.fr/en/latest/index.html#rpaths.PosixPath
http://rpaths.remram.fr/en/latest/index.html#rpaths.Path
http://docs.python.org/library/pickle.html#module-pickle
https://github.com/ViDA-NYU/reprozip/blob/master/reprounzip/reprounzip/signals.py

ReproZip Documentation, Release 0.7

1.6.3 Final Observations

After reading this page, reading the source code of one of the “official” unpackers is probably the best way of un-
derstanding how to write your own. They should be short enough to be easy to grasp. Should you have additional
questions, do not hesitate to use our development mailing-list: reprozip-dev@vgc.poly.edu.

24 Chapter 1. Contents

CHAPTER 2

Links

• Project website

• GitHub repository

• Mailing list: reprozip-users@vgc.poly.edu

25

http://vida-nyu.github.io/reprozip/
https://github.com/ViDA-NYU/reprozip
http://vgc.poly.edu/mailman/listinfo/reprozip-users

	Contents
	Why ReproZip?
	Installation
	Using reprozip
	Using reprounzip
	Frequently Asked Questions
	Developer's Guide

	Links

