

ReproZip’s Documentation

Welcome to ReproZip’s documentation!

ReproZip [https://www.reprozip.org/] is a tool aimed at simplifying the process of creating reproducible experiments from command-line executions. It tracks operating system calls and creates a bundle that contains all the binaries, files, and dependencies required to run a given command on the author’s computational environment. A reviewer can then extract the experiment in his own environment to reproduce the results, even if the environment has a different operating system from the original one.

Currently, ReproZip can only pack experiments that originally run on Linux.

Concretely, ReproZip has two main steps:

	The packing step happens in the original environment, and generates a compendium of the experiment so as to make it reproducible. ReproZip tracks operating system calls while executing the experiment, and creates a .rpz file, which contains all the necessary information and components for the experiment.

	The unpacking step reproduces the experiment from the .rpz file. ReproZip offers different unpacking methods, from simply decompressing the files in a directory to starting a full virtual machine, and they can be used interchangeably from the same packed experiment. It is also possible to automatically replace input files and command-line arguments. Note that this step is also available on Windows and Mac OS X, since ReproZip can unpack the experiment in a virtual machine for further reproduction.

Contents

	Why ReproZip?

	Installation
	Linux

	Mac OS X

	Windows

	Anaconda

	Using reprozip
	Tracing an Experiment

	Editing the Configuration File

	Creating a Bundle

	Further Considerations

	Using reprounzip
	Inspecting a Bundle

	Unpackers

	Using an Unpacker

	Further Considerations

	Visualizing the Provenance Graph
	Command-Line Options

	Common Recipes

	Making Jupyter Notebooks Reproducible with ReproZip
	Installation

	Packing

	Unpacking

	ReproUnzip GUI
	Installation

	Usage

	VisTrails Plugin
	VisTrails Setup

	Usage

	Frequently Asked Questions
	Can ReproZip pack a client-server scenario?

	Can ReproZip pack a database?

	Can ReproZip pack interactive tools?

	Can ReproZip pack graphical tools?

	How can I access the generated system or virtual machine directly?

	What if my experiment runs on a distributed environment?

	Troubleshooting

	Structure of Unpacked Experiments
	Common Files across Unpackers

	The directory Unpacker

	The chroot Unpacker

	The vagrant Unpacker

	The docker Unpacker

	Developer’s Guide
	General Development Information

	Introduction to ReproZip

	Writing Unpackers

	Final Observations

	Glossary

Links

	Project website [https://www.reprozip.org/]

	GitHub repository [https://github.com/VIDA-NYU/reprozip]

	Mailing list: reprozip@nyu.edu [https://groups.google.com/a/nyu.edu/g/reprozip]

Why ReproZip?

Reproducibility is a core component of the scientific process: it helps researchers all around the world to verify the results and to also build on them, allowing science to move forward. In natural science, long tradition requires experiments to be described in enough detail so that they can be reproduced by researchers around the world. The same standard, however, has not been widely applied to computational science, where researchers often have to rely on plots, tables, and figures included in papers, which loosely describe the obtained results.

The truth is computational reproducibility can be very painful to achieve for a number of reasons. Take the author-reviewer scenario of a scientific paper as an example. Authors must generate a compendium that encapsulates all the inputs needed to correctly reproduce their experiments: the data, a complete specification of the experiment and its steps, and information about the originating computational environment (OS, hardware architecture, and library dependencies). Keeping track of this information manually is rarely feasible: it is both time-consuming and error-prone. First, computational environments are complex, consisting of many layers of hardware and software, and the configuration of the OS is often hidden. Second, tracking library dependencies is challenging, especially for large experiments. If authors did not plan for reproducibility since the beginning of the project, reproducibility is drastically hampered.

For reviewers, even with a compendium in their hands, it may be hard to reproduce the results. There may be no instructions about how to execute the code and explore it further; the experiment may not run on his operating system; there may be missing libraries; library versions may be different; and several issues may arise while trying to install all the required dependencies, a problem colloquially known as dependency hell [https://en.wikipedia.org/wiki/Dependency_hell].

ReproZip helps alleviate these problems by allowing the user to easily capture all the necessary components in a single, distributable bundle. Also, the tool makes it easier to reproduce an experiment by providing different unpacking methods and interfaces that avoids the need to install all the required dependencies and that makes it possible to run the experiment under different inputs.

Installation

ReproZip is available as open source, released under the Revised BSD License. The tool is comprised of two components: reprozip (for the packing step) and reprounzip (for the unpack step). Additional components and plugins are also provided for reprounzip: reprounzip-vagrant, which unpacks the experiment in a Vagrant virtual machine; reprounzip-docker, which unpacks the experiment in a Docker container; and reprounzip-vistrails, which creates a VisTrails workflow to reproduce the experiment. More plugins may be developed in the future (and, of course, you are free to roll your own).
In our website [https://www.reprozip.org/], you can find links to our PyPI packages and our GitHub repository [https://github.com/VIDA-NYU/reprozip].

In the following, you will find installation instructions for Linux, Mac OS X, and Windows. ReproZip is also available for the Anaconda Python distribution.

Linux

For Linux distributions, both reprozip and reprounzip components are available.

Required Software Packages

Python 2.7.3 or greater, or 3.3 or greater is required to run ReproZip [1]. If you don’t have Python on your machine, you can get it from python.org [https://www.python.org/]. You will also need the pip [https://pip.pypa.io/en/latest/installing/] installer.

Besides Python and pip, each component or plugin to be used may have additional dependencies that you need to install (if you do not have them already installed in your environment), as described below:

	Component / Plugin

	Required Software Packages

	reprozip

	SQLite [https://www.sqlite.org/],
Python headers,
a working C compiler

	reprounzip

	None

	reprounzip-vagrant

	Python headers,
a working C compiler,
Vagrant v1.1+ [https://www.vagrantup.com/],
VirtualBox [https://www.virtualbox.org/]

	reprounzip-docker

	Docker [https://www.docker.com/]

	reprounzip-vistrails

	None [2]

Debian and Ubuntu

You can get all the required dependencies using APT:

apt-get install python3 python3-dev python3-pip gcc libsqlite3-dev libssl-dev libffi-dev

Fedora & CentOS

You can get the dependencies using the Yum packaging manager:

yum install python3 python3-devel gcc sqlite-devel openssl-devel libffi-devel

[1]
reprozip and reprounzip graph will not work before 2.7.3 due to Python bug 13676 [https://bugs.python.org/issue13676] related to sqlite3. Python 2.6 is ancient and unsupported.

[2]
VisTrails v2.2.3+ [https://www.vistrails.org/] is required to run the workflow generated by the plugin.

Installing reprozip

To install or update the reprozip component, simply run the following command:

$ pip install -U reprozip

Installing reprounzip

You can install or update reprounzip with all the available components and plugins using:

$ pip install -U reprounzip[all]

Or you can install reprounzip and choose components manually:

Example, this installs all the components
$ pip install -U reprounzip reprounzip-docker reprounzip-vagrant reprounzip-vistrails

Mac OS X

For Mac OS X, only the reprounzip component is available.

Binaries

An installer containing Python 2.7, reprounzip, and all the plugins can be downloaded from GitHub [http://reprozip-files.s3-website-us-east-1.amazonaws.com/mac-installer].

Required Software Packages

Python 2.7.3 or greater, or 3.3 or greater is required to run ReproZip [3]. If you don’t have Python on your machine, you can get it from python.org [https://www.python.org/]; you should prefer a 2.x release to a 3.x one. You will also need the pip [https://pip.pypa.io/en/latest/installing/] installer.

Besides Python and pip, each component or plugin to be used may have additional dependencies that you need to install (if you do not have them already installed in your environment), as described below:

	Component / Plugin

	Required Software Packages

	reprounzip

	None

	reprounzip-vagrant

	Python headers,
Vagrant v1.1+ [https://www.vagrantup.com/],
VirtualBox [https://www.virtualbox.org/]

	reprounzip-docker

	Docker [https://www.docker.com/]

	reprounzip-vistrails

	None [4]

You will need Xcode installed, which you can get from the Mac App Store, and the Command Line Developer Tools; instrucions on installing the latter may depend on your Mac OS X version (some information on StackOverflow here [https://stackoverflow.com/questions/9329243/how-to-install-xcode-command-line-tools/9329325#9329325]).

See also

Why does reprounzip-vagrant installation fail with error “unknown argument: -mno-fused-madd” on Mac OS X?

 Using reprozip

Using reprozip

The reprozip component is responsible for packing an experiment, which is done in three steps: tracing the experiment, editing the configuration file (if necessary), and creating the reproducible package. Each of these steps is explained in more details below. Please note that reprozip is only available for Linux distributions.

Tracing an Experiment

First, reprozip needs to trace the operating system calls used by the experiment, so as to identify all the necessary information for its future re-execution, such as binaries, files, library dependencies, and environment variables.

The following command is used to trace a command line, or a run, used by the experiment:

$ reprozip trace <command-line>

where <command-line> is the command line. By running this command, reprozip executes <command-line> and uses ptrace to trace all the system calls issued, storing them in an SQLite database.

If you run the command multiple times, reprozip might ask you if you want to continue with your current trace (append the new command-line to it) or replace it (throw away the previous command-line you traced). You can skip this prompt by using either the --continue or --overwrite flag, like this:

$ reprozip trace --continue <command-line>

Note that the final bundle will be able to reproduce any of the runs, and files shared by multiple runs are only stored once.

By default, if the operating system is based on Debian or RPM packages (e.g.: Ubuntu, CentOS, Fedora, …), reprozip will also try to automatically identify the distribution packages from which the files come, using the available package manager of the system. This is useful to provide more detailed information about the dependencies, as well as to further help when reproducing the experiment. However, note that the trace command can take some time doing that after the experiment finishes, depending on the number of file dependencies that the experiment has. To disable this feature, users may use the flag --dont-identify-packages:

$ reprozip trace --dont-identify-packages <command-line>

The database, together with a configuration file (see below), are placed in a directory named .reprozip-trace, created under the path where the reprozip trace command was issued.

Editing the Configuration File

The configuration file, which can be found in .reprozip-trace/config.yml, contains all the information necessary for creating the experiment bundle. This file is generated by the tracer and drives the packing step.

It is very likely that you won’t need to modify this file, as the automatically-generated one should be sufficient to create a working bundle. However, in some cases, you may want to edit it prior to the creation of the package to add or remove files used by your experiment. This can be particularly useful, for instance, to remove big files that can be obtained elsewhere when reproducing the experiment, to keep the size of package small, and also to remove sensitive information that the experiment may use. The configuration file can also be used to edit the main command line, to add or remove environment variables, and to edit information regarding input/output files.

The first part of the configuration file gives general information with respect to the experiment and its runs, including command lines, environment variables, working directory, and machine information. Also, each run has a unique identifier (given by id) that is consistently used for packing and unpacking purposes:

Run info
version: <reprozip-version>
runs:
Run 0
- id: <run-id>
 architecture: <machine-architecture>
 argv: <command-line-arguments>
 binary: <command-line-binary>
 distribution: <linux-distribution>
 environ: <environment-variables>
 exitcode: <exit-code>
 gid: <group-id>
 hostname: <machine-hostname>
 system: <system-kernel>
 uid: <user-id>
 workingdir: <working-directory>

Run 1
- id: ...
...

If necessary, users may change command line parameters by editing argv, and add or remove environment variables by editing environ. Users may also give a more meaningful and user-friendly identifier for a run by changing id. Other attributes should not be changed in general.

The next section brings information about input and output files, including their original paths and which runs read and/or wrote them. These are the files that reprozip identified as the main input or result of the experiment, which reprounzip will later be able to replace and extract from the experiment when reproducing it. You may add, remove, or edit these files in case reprozip fails in recognizing any important information, as well as give meaningful names to them by editing name:

Inputs are files that are only read by a run; reprounzip can replace these
files on demand to run the experiment with custom data.
Outputs are files that are generated by a run; reprounzip can extract these
files from the experiment on demand, for the user to examine.
The name field is the identifier the user will use to access these files.
inputs_outputs:
 - name: <file-identifier>
 path: <path-to-file>
 read_by_runs: <run-ids>
 written_by_runs: <run-ids>
 - name: ...
 ...

Note that you can prevent reprozip from identifying which files are input or output by using the --dont-find-inputs-outputs flag in the reprozip trace command.

Note

To visualize the dataflow of the experiment, pleaser refer to Visualizing the Provenance Graph.

 Using reprounzip

Using reprounzip

While reprozip is responsible for tracing and packing an experiment, reprounzip is the component used for the unpacking step. reprounzip is distributed with three unpackers for Linux (reprounzip directory, reprounzip chroot, and reprounzip installpkgs), but more unpackers are supported by installing additional plugins; some of these plugins are compatible with different environments as well (e.g.: reprounzip-vagrant and reprounzip-docker).

Inspecting a Bundle

Showing Bundle Information

Before unpacking an experiment, it is often useful to have further information with respect to its bundle. The reprounzip info command allows users to do so:

$ reprounzip info <bundle>

where <bundle> corresponds to the experiment bundle (i.e., the .rpz file).

The output of this command has three sections. The first section, Pack information, contains general information about the experiment bundle, including size and total number of files:

----- Pack information -----
Compressed size: <compressed-size>
Unpacked size: <unpacked-size>
Total packed paths: <number>

The next section, Metadata, contains information about dependencies (i.e., software packages), machine architecture from the packing environment, and experiment runs:

----- Metadata -----
Total software packages: <total-number-software-packages>
Packed software packages: <number-packed-software-packages>
Architecture: <original-architecture> (current: <current-architecture>)
Distribution: <original-operating-system> (current: <current-operating-system>)
Runs:
 <run-id>: <command-line>
 <run-id>: <command-line>
 ...

Note that, for Architecture and Distribution, the command shows information with respect to both the original environment (i.e., the environment where the experiment was packed) and the current one (i.e., the environment where the experiment is to be unpacked). This helps users understand the differences between the environments in order to provide a better guidance in choosing the most appropriate unpacker.

If the verbose mode is used, more detailed information on the runs is provided:

$ reprounzip -v info <bundle>
...
----- Metadata -----
...
Runs:
 <run-id>: <command-line>
 wd: <working-directory>
 exitcode: <exit-code>
 <run-id>: <command-line>
 wd: <working-directory>
 exitcode: <exit-code>
 ...

Last, the section Unpackers shows which of the installed reprounzip unpackers can be successfully used in the current environment:

----- Unpackers -----
Compatible:
 ...
Incompatible:
 ...
Unknown:
 ...

Compatible lists the unpackers that can be used in the current environment, while Incompatible lists the unpackers that are not supported in the current environment. When using the verbose mode, an additional Unknown list shows the installed unpackers that may not work. As an example, for an experiment originally packed on Ubuntu and a user reproducing it on Windows, the vagrant unpacker (available through the reprounzip-vagrant plugin) is compatible, but installpkgs is not; vagrant may also be listed under Unknown if vagrant is not in PATH (e.g.: if Vagrant [https://www.vagrantup.com/] is not installed).

Showing Input and Output Files

The reprounzip showfiles command can be used to list the input and output files defined for the experiment. These files are identified by an id, which is either chosen by ReproZip or set in the configuration file before creating the .rpz file:

$ reprounzip showfiles bundle.rpz
Input files:
 program_config
 ipython_config
 input_data
Output files:
 rendered_image
 logfile

Using the flag -v shows the complete path of each of these files in the experiment environment:

$ reprounzip -v showfiles bundle.rpz
Input files:
 program_config (/home/user/.progrc)
 ipython_config (/home/user/.ipython/profile_default/ipython_config.py)
 input_data (/home/user/experiment/input.bin)
Output files:
 rendered_image (/home/user/experiment/output.png)
 logfile (/home/user/experiment/log.txt)

You can use the --input or --output flags to show only files that are inputs or outputs. If the bundle contains multiple runs, you can also filter files for a specific run:

$ reprounzip -v showfiles bundle.rpz preprocessing-step
Input files:
 input_data (/home/user/experiment/input.bin)
Output files:
 logfile (/home/user/experiment/log.txt)

where preprocessing-step is the run id. To see the dataflow of the experiment, please refer to Visualizing the Provenance Graph.

The reprounzip showfiles command is particularly useful if you want to replace an input file with your own, or to get and save an output file for further examination. Please refer to Managing Input and Output Files for more information.

New in version 1.0.4: The --input and --output flags.

Creating a Provenance Graph

ReproZip also allows users to generate a provenance graph related to the experiment execution by reading the metadata available in the .rpz bundle. This graph shows the experiment runs as well as the files and other dependencies they access during execution; this is particularly useful to visualize and understand the dataflow of the experiment.

See Visualizing the Provenance Graph for details.

Unpackers

From the same .rpz bundle, reprounzip allows users to set up the experiment for reproduction in several ways by the use of different unpackers. Unpackers are plugins that have general interface and commands, but can also provide their own command-line syntax and options. Thanks to the decoupling between packing and unpacking steps, .rpz files from older versions of ReproZip can be used with new unpackers.

The reprounzip tool comes with three unpackers that are only compatible with Linux (reprounzip directory, reprounzip chroot, and reprounzip installpkgs). Additional unpackers, such as reprounzip vagrant and reprounzip docker, can be installed separately. Next, each unpacker is described in more details; for more information on how to use an unpacker, please refer to Using an Unpacker.

The directory Unpacker: Unpacking as a Plain Directory

The directory unpacker (reprounzip directory) allows users to unpack the entire experiment (including library dependencies) in a single directory, and to reproduce the experiment directly from that directory. It does so by automatically setting up environment variables (e.g.: PATH, HOME, and LD_LIBRARY_PATH) that point the experiment execution to the created directory, which has the same structure as in the packing environment.

Please note that, although this unpacker is easy to use and does not require any privilege on the reproducing machine, it is unreliable since the directory is not isolated in any way from the remainder of the system. In particular, should the experiment use absolute paths, they will hit the host system instead. However, if the system has all the required packages (see The installpkgs Unpacker: Installing Software Packages), and the experiment’s files are addressed with relative paths, the use of this unpacker should not cause any problems.

Warning

reprounzip directory provides no isolation of the filesystem, as mentioned before. If the experiment uses absolute paths, either provided by you or hardcoded in the experiment, they will point outside the unpacked directory. Please be careful to use relative paths in the configuration and command line if you want this unpacker to work with your experiment. Other unpackers are more reliable in this regard.

 Visualizing the Provenance Graph

Visualizing the Provenance Graph

Note

If you are using a Python version older than 2.7.3, this feature will not be available due to Python bug 13676 [https://bugs.python.org/issue13676] related to sqlite3.

 Making Jupyter Notebooks Reproducible with ReproZip

Making Jupyter Notebooks Reproducible with ReproZip

reprozip-jupyter is a plugin for Jupyter Notebooks [https://jupyter.org], a popular open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. These are valuable documents for data cleaning, analysis, writing executable papers/articles, and more. However, Jupyter Notebooks are subject to dependency hell like any other application – just the Notebook is not enough for full reproducibility. We have written a ReproZip plugin for Jupyter Notebooks to help users automatically capture dependencies (including data, environment variables, etc.) of Notebooks and also automatically set up those dependencies in another computing environment.

Installation

You can install reprozip-jupyter with pip:

$ pip install reprozip-jupyter

Or Anaconda:

$ conda install --channel conda-forge reprozip-jupyter

Once successfully installed, you should then enable the plugin for both the client and server side of Jupyter Notebooks:

$ jupyter nbextension install --py reprozip_jupyter --user
$ jupyter nbextension enable --py reprozip_jupyter --user
$ jupyter serverextension enable --py reprozip_jupyter --user

Once these steps are completed, when you start a Jupyter Notebook server, you should be able to see the ReproZip button in your notebook’s toolbar.

Packing

Once you have a notebook that executes the way you want, you can trace and pack all the dependencies, data, and provenance with reprozip-jupyter by simply clicking the button on the notebook’s toolbar:

[image: _images/rzj-button.png]
The notebook will execute from top-to-bottom and reprozip-jupyter traces that execution. If there are no errors in the execution, you’ll see two pop-ups like this one after the other:

[image: _images/rzj-running.png]
reprozip-jupyter will name the resulting ReproZip bundle (.rpz) as notebookname_datetime.rpz and save it to the same working directory the notebook is in:

[image: _images/rzj-pkg.png]
Note that the notebook file itself (.ipynb) is not included in the bundle, so you should share or archive both of those files. The reason is that a lot of services can render notebooks (GitHub, OSF…), and they wouldn’t be able to if it was in the RPZ file.

Unpacking

Now, anyone can rerun the Jupyter notebook, with all dependencies automatically configured. First, they would need to install reprounzip and the reprounzip-docker plugin (see the installation steps). Second, they need to download or otherwise acquire the .rpz file and original .ipynb notebook they’d like to reproduce.

To reproduce the notebook using the GUI, follow these steps:

	Double-click the .rpz file.

	The first tab in the window that appears is for you to set up how you’d like ReproUnzip to unpack and configure the contents of the .rpz. Choose docker as your unpacker, and choose the directory you’d like to unpack into.

	Make sure the Jupyter Integration is checked, and click Run experiment:

[image: _images/rzj-setup.png]

	This second table allows you to interact with and rerun the notebook. All you need to do is click ‘Run Experiment’ and the Jupyter Notebook home file list should pop up in your default browser (if not, navigate to localhost:8888). Open the notebook, and rerun with every dependency configured for you!

[image: _images/rzj-run.png]
On the command line, you would:

	Set up the experiment using reprounzip-docker:

$ reprounzip docker setup <bundle.rpz> <directory>

	Rerun the notebook using reprozip-jupyter:

$ reprozip-jupyter run <directory>

	The Jupyter Notebook home file list should pop up in your default browser (if not, navigate to localhost:8888).

	Open the notebook, and rerun with every dependency configured for you!

 ReproUnzip GUI

ReproUnzip GUI

reprounzip-qt is a graphical interface (GUI) for reprounzip, allowing you to unpack and reproduce experiments from .rpz files without having to use the command-line. You can also set it as the default handler for the .rpz file extension so you can open them via double-click.

Installation

reprounzip-qt comes with the installer on Windows [http://reprozip-files.s3-website-us-east-1.amazonaws.com/windows-installer] and Mac [http://reprozip-files.s3-website-us-east-1.amazonaws.com/mac-installer]. If you used one of these, you will be able to double click on any .rpz file to boot up the GUI.

If you are using Anaconda, you can install reprounzip-qt from anaconda.org:

$ conda install --channel conda-forge reprounzip-qt

Otherwise, you will need to install PyQt5 [https://www.riverbankcomputing.com/software/pyqt/download] (or PyQt4) before you can install reprounzip-qt from pip (on Debian or Ubuntu, you can use apt-get install pyqt5-dev).

On Linux, you will need to run the application one time so that it registers
itself as the handler for .rpz files.

[image: _images/reprounzip-qt-linux-register.png]

Usage

The first tab in the window that appears is for you to set up the experiment. This will allow you to choose which unpacker you’d like to use to reproduce the experiment, and in which directory you’d like to unpack it.

[image: _images/reprounzip-qt.png]
After successfully unpacking, you’ll be prompted to run the experiment in the second tab. You can choose which run you want to execute, though the default is to have all runs selected. ReproUnzip will detect the order of the runs and reproduce the experiment accordingly.

[image: _images/reprounzip-qt-1.png]
Clicking “Manage Files” will bring up options to download the input and output data of the original experiment, and upload your own data to use it in the same experiment. You’ll notice input files are marked [I] and output files are marked [O]. [IO] are both input and output files.

[image: _images/reprounzip-qt-manageFiles.png]

 VisTrails Plugin

VisTrails Plugin

The reprounzip-vistrails plugin is a component that interacts with the existing unpackers to generate and execute a VisTrails [https://www.vistrails.org/] workflow from the packed experiment. By using VisTrails, you can better manage the experiment workflow: it allows you to run unpacked ReproZip experiments, replace input files, visualize and retrieve output files, and modify the dataflow to re-use steps of the original experiment. For more information about VisTrails, please see their user’s guide [https://www.vistrails.org/index.php/Users_Guide].

Note

This plugin is not distributed with reprounzip; it is a separate component that should be installed beforehand (see Installation for more details).

 Frequently Asked Questions

Frequently Asked Questions

Can ReproZip pack a client-server scenario?

Yes! However, note that only tracing the client will not capture the full story: reproducibility is better achieved (and guaranteed) if the server is traced as well.
Having said that, currently, ReproZip can only trace local servers: if the server is remote (i.e., running in another machine), ReproZip cannot capture it. In this case, you can trace the client, and the experiment can only be reproduced if the remote server is still running at the moment of the reproduction.

The easiest way to pack a local client-server experiment is to write a script that starts the server, runs your client(s), and then shuts down the server; ReproZip can then trace this script. See Capturing Connections to Servers for more information.

Can ReproZip pack a database?

ReproZip can trace a database server; however, because of the format it uses to store data (and also because different databases work differently), it might be hard for you to control exactly what data will be packed. You probably want to pack all the data from the databases/tables that your experiment uses and not just the pages that were touched while tracing the execution. This can be done by inspecting the configuration file and adding the relevant patterns that cover the data, e.g.: for MySQL:

additional_patterns:
 - /var/lib/mysql/**

See Capturing Connections to Servers for an example using a local database and additional information.

Note that ReproZip does not currently save the state of the files. Therefore, if your experiment modifies a database, ReproZip will pack the already modified data (not the one before tracing the experiment execution).

Can ReproZip pack interactive tools?

Yes! The reprounzip component should have no problems with experiments that interact with the user through the terminal. If your experiment runs until it receives a Ctrl+C signal, that is fine as well: ReproZip will not interfere unless you press Ctrl+C twice, stopping the experiment.

GUI tools are also supported; see Can ReproZip pack graphical tools? for more information.

Can ReproZip pack graphical tools?

Yes!
On Linux, graphical display is handled by the X server. Applications can connect to it as clients to display their windows and components, and to get user input.
Most unpackers now support forwarding the X connection from the experiment to the X server running on the unpacking machine. You will need a running X server to make this work, such as Xming [https://sourceforge.net/projects/xming/] for Windows or XQuartz [https://www.xquartz.org/] for Mac OS X. If you are running Linux, chances are that an X server is already configured and running.

X support is not enabled by default; to enable it, use the flag --enable-x11 in the run command of your preferred unpacker.

Warning

While displaying a UI through the X protocol works fine, applications using direct rendering (DRI) to access dedicated graphic hardware might not be reproducible: the libGL library packed with the experiment is often specific to the driver of the original machine, and therefore the machine where the experiment is being reproduced would need to use the exact same hardware and driver.

Please refrain from requiring direct rendering in applications that you intend to pack with ReproZip.

 Troubleshooting

Troubleshooting

The best way to start solving an issue in ReproZip is probably to look at the log messages. Some messages are not displayed by default when running ReproZip, but you can use the --verbose (or -v) flag to display them. In addition, all the log messages are stored under $HOME/.reprozip/log.

Please feel free to contact us at reprozip@nyu.edu if you encounter issues while using ReproZip.

	Issue:

	“ reprozip does not identify my input/output file.”

	Diagnosis:

	ReproZip uses some heuristics to identify an input or output file. However, this is only intended to be a starting point, since these heuristics may fail.

	Solution:

	You should check the configuration file and edit the inputs_outputs section if necessary; giving readable names to input/output files also helps during reproduction. Please refer to Editing the Configuration File for more information.

	Issue:

	“None of my files are packed when tracing a daemon.”

	Diagnosis:

	If you are starting the daemon via the service tool, it might be calling init over a client/server connection. In this situation, ReproZip will successfully pack the client, but anything the server (init) does will not be captured.

	Solution:

	You can still trace the binary or a non-systemd init script directly. For example, instead of:

$ reprozip trace service mysql start

you can trace the binary:

$ reprozip trace /usr/bin/mysqld

Note that, if you choose to trace the binary, you need to figure out the right command line options to use.
Also, note that running the init script in /etc/init.d/... is not enough, since those scripts get subverted to call systemctl when systemd is installed.

	Issue:

	“ reprozip fails with couldn't use ptrace “

	Diagnosis:

	ptrace is the mechanism that ReproZip uses to attach to another process and follow its system calls. Because it is so powerful, some security policies, environments or isolation mechanism may disable it.

	Solution:

	
	If you are using Docker, you can use the Docker option --cap-add=SYS_PTRACE (or provide your own seccomp profile that allows ptrace, by adding "ptrace" to the default profile [https://github.com/moby/moby/blob/master/profiles/seccomp/default.json]; see the Docker documentation on seccomp [https://docs.docker.com/engine/security/seccomp/]).

	Issue:

	“ reprounzip cannot get an output file using download after reproducing the experiment.”

	Diagnosis:

	This is probably the case where this output file does not have a fixed path name. It is common for experiments to dynamically choose where the outputs should be written, e.g.: by putting the date and time in the filename. However, ReproZip uses filenames in the inputs_outputs section of the configuration file to detect those when reproducing the experiment: if the name of the output file when reproducing is different from when it was originally packed, ReproZip cannot detect these as output files, and therefore, cannot get them through the download command.

	Solution:

	The easiest way to solve this issue is to re-pack the experiment: write a simple bash script that runs the experiment and either renames outputs or creates symbolic links to them with known filenames; then, trace this script (instead of the actual entry-point of your experiment) and specify these fixed path names in the inputs_outputs section of the configuration file.

	Issue:

	“ reprounzip-vagrant installation fails with error unknown argument: '-mno-fused-madd' on Mac OS X.”

	Diagnosis:

	This is an issue with the Apple LLVM compiler, which treats unrecognized command-line options as errors.

	Solution:

	As a workaround, before installing reprounzip-vagrant, run the following:

$ export CFLAGS="-Wno-error=unused-command-line-argument-hard-error-in-future"

Then, re-install reprounzip-vagrant:

$ pip install -I reprounzip-vagrant

Or use the following command in case you want all the available plugins:

$ pip install -I reprounzip[all]

	Issue:

	“The experiment fails with Error: Can't open display: :0 when trying to reproduce it.”

	Diagnosis:

	The experiment probably involves running a GUI tool.

	Solution:

	The reprounzip component supports GUI tools, but it is not enabled by default; add the flag --enable-x11 to the run command to enable it. See Can ReproZip pack graphical tools? for more information.

	Issue:

	“The experiment run with reprounzip directory fails to find a file that has been packed.”

	Diagnosis:

	The directory unpacker does not provide any isolation from the filesystem: if the experiment being reproduced use absolute paths, these will point outside the experiment directory, and files may not be found.

	Solution:

	Make sure that the experiment does not use any absolute paths: if only relative paths are used internally and in the command line, reprounzip directory should work. As an alternative, you can use other unpackers (e.g.: reprounzip chroot and reprounzip vagrant) that work in the presence of hardcoded absolute paths.

	Issue:

	“ reprounzip fails with DistributionNotFound errors.”

	Diagnosis:

	You probably have some plugins left over from a previous installation.

	Solution:

	Be sure to upgrade or remove outdated plugins when you upgrade reprounzip. The following command may help:

$ pip install -U reprounzip[all]

	Issue:

	“ reprounzip shows running in chroot, ignoring request .”

	Diagnosis:

	This message comes from the systemd client, which will probably not work with ReproZip.

	Solution:

	In this case, the experiment should be re-packed without using systemd (see this issue for more information).

	Issue:

	“ reprounzip vagrant setup fails to resolve a host address.”

	Diagnosis:

	When running reprounzip vagrant setup, if you get an error similar to this:

==> default: failed: Temporary failure in name resolution.
==> default: wget: unable to resolve host address ...

there is probably a firewall blocking the Vagrant VM to have Internet connection; the VM needs Internet connection to download required software for setting up the experiment for you.

	Solution:

	Make sure that your anti-virus/firewall is not causing this issue.

	Issue:

	“The experiment fails because of insufficient memory in Vagrant.”

	Diagnosis:

	It is possible that the default amount of memory allocated to the VM is insufficient for the experiment. You can see a lot of different messages there, including:

	Out of memory

	Could not allocate memory

	Killed

	Solution:

	From VirtualBox, stop the machine and allocate more memory under Settings > System > Motherboard > Memory.

You can also use the --memory option when you run reprounzip vagrant setup to specify the amount of memory (in megabytes) at that time.

	Issue:

	“ reprounzip run fails with no such file or directory or similar.”

	Diagnosis:

	This error message may have different reasons, but it often means that a specific version of a library or a dynamic linker is missing:

	If you are requesting reprounzip to install software using the package manager (by running reprounzip installpkgs), it is possible that the software packages from the package manager are not compatible with the ones required by the experiment.

	If, while packing, the user chose not to include some packages, reprounzip will try to install the ones from the package manager, which may not be compatible.

	If you are using reprounzip vagrant or reprounzip docker, ReproZip may be failing to detect the closest base system for unpacking the experiment.

	Solution:

	
	Use the files inside the experiment bundle to ensure compatibility.

	Contact the author of the ReproZip bundle to ask for a new package with all software packages included.

	Try a different base system that you think it is closer to the original one by using the option --base-image when running these unpackers.

	Issue:

	“There are warnings from requests/urllib3 when running ReproZip.”

/usr/local/lib/python2.7/dist-packages/requests/packages/urllib3/util/ssl_.py:79:
InsecurePlatformWarning: A true SSLContext object is not available. This
prevents urllib3 from configuring SSL appropriately and may cause certain SSL
connections to fail. For more information, see
https://urllib3.readthedocs.io/en/latest/security.html#insecureplatformwarning.

	Diagnosis:

	Most Python versions are insecure, because they do not validate SSL certificates, thus generating these warnings.

	Solution:

	If you are using Python 2.7.9 and later, you shouldn’t be affected, but if you see InsecurePlatformWarning, you can run pip install requests[security], which should bring in the missing components.

 Structure of Unpacked Experiments

Structure of Unpacked Experiments

While reprounzip is designed to allow users to reproduce an experiment without having to master the tool used to run it (e.g.: Vagrant [https://www.vagrantup.com/] and Docker [https://www.docker.com/]), in some situations it might be useful to go behind the scenes and interact with the unpacked experiments directly.

This page describes in more details how the unpackers operate.

Note

Future versions of unpackers might work in a different way. No attempt is made to make unpacked experiments compatible across different versions of reprounzip. Bundles will always be compatible though.

 Developer’s Guide

Developer’s Guide

General Development Information

Development happens on GitHub [https://github.com/VIDA-NYU/reprozip]; bug reports and feature requests are welcome. If you are interested in giving us a hand, please do not hesitate to submit a pull request there.

Continuous testing is provided by GitHub Actions [https://github.com/VIDA-NYU/reprozip/actions]. Note that ReproZip still tries to support Python 2 as well as Python 3. Test coverage is not very high because there are a lot of operations that are difficult to cover on CI (for instance, Vagrant VMs cannot be used over there).

If you have any questions or need help with the development of an unpacker or plugin, please use our development mailing-list at reprozip@nyu.edu [https://groups.google.com/a/nyu.edu/g/reprozip].

Introduction to ReproZip

ReproZip works in two steps: tracing and packing. Under the hood, tracing is two separate steps, leading to the following workflow:

	Running the experiment under trace. During this part, the experiment is running, and the _pytracer C extension watches it through the ptrace mechanism, recording information in the trace SQLite3 database (.reprozip-trace/trace.sqlite3). This database contains raw information as it is recorded and does little else, leaving that to the next step. This part is referred to as the “C tracer”.

	After the experiment is done, some additional information is computed by the Python code to generate the configuration file, by looking at the trace database and the filesystem. For example, all accesses to a file are aggregated to decide if it is read or written by the overall experiment, if it is an input or output file, resolve symlinks, etc. Additional information is written such as OS information and which distribution package each file comes from.

	Packing reads the configuration file to create the .rpz bundle, which includes a configuration file (re-written into a “canonical” version), the trace database (though it is not read at this step), and the files listed in the configuration which was possibly altered by the user.

Therefore it is important to note that the configuration file and the trace database contain distinct information, and although the configuration is inferred from the database, it contains some additional details that was obtained from the original machine afterwards.

Only the configuration file should be necessary to run unpackers. The trace database is included for information, and to support additional commands like reprounzip graph (Visualizing the Provenance Graph).

Writing Unpackers

ReproZip is divided into two steps. The first is packing, which gives a generic package containing the trace SQLite database, the YAML configuration file (which lists the paths, packages, and metadata such as command line, environment variables, and input/output files), and actual files. In the second step, a package can be run using reprounzip. This decoupling allows the reproducer to select the unpacker of his/her desire, and also means that when a new unpacker is released, users will be able to use it on their old packages.

Currently, different unpackers are maintained: the defaults ones (directory and chroot), vagrant (distributed as reprounzip-vagrant [https://pypi.org/project/reprounzip-vagrant/]) and docker (distributed as reprounzip-docker [https://pypi.org/project/reprounzip-docker/]). However, the interface is such that new unpackers can be easily added. While taking a look at the “official” unpackers’ source is probably a good idea, this page gives some useful information about how they work.

ReproZip Bundle Format (.rpz)

An .rpz file is a tar.gz archive that contains a directory METADATA, which contains meta-information from reprozip, and an archive DATA.tar.gz, which contains the actual files that were packed and that will be unpacked to the target directory for reproducing the experiment.

The METADATA/version file marks the file as a ReproZip bundle. It always contains the string REPROZIP VERSION 2. It previously contained REPROZIP VERSION 1 before version 0.8 (2015), where DATA was a directory instead of being a tar.gz file.

The METADATA/config.yml file is in the same format as the configuration file generated by reprozip, but without the additional_patterns section (at this point, it has already been expanded to the actual list of files while packing).

The METADATA/trace.sqlite3 file is the original trace generated by the C tracer and maintained in a SQLite database; it contains all the information about the experiment, in case the configuration file is insufficient in some aspect. This file is used, for instance, by the graph unpacker, so that it can recover the exact hierarchy of processes, together with the executable images they execute and the files they access (with the time and mode of these accesses).

See also

Trace Database Schema

 Glossary

Glossary

	configuration (file)

	A YAML file generated by reprozip trace and read by reprozip pack. It can be edited before creating the package to control which files are to be included. It also contain other metadata used during reproduction. See Editing the Configuration File.

	distribution package

	A software component installed by the Linux distribution’s package manager. ReproZip tries to identify from which distribution package each file comes; this allows the reproducer to install the software from his distribution’s package manager instead of extracting the files from the .rpz file.

	bundle (or pack)

	A .rpz file generated by reprozip pack, containing all the files and metadata required to reproduce the experiment on another machine. See Using reprozip.

	run

	A single command line traced by reprozip trace [--continue]. Multiple commands can be traced successively before creating the bundle; the reproducer will be able to run them separately using reprounzip <unpacker> run <directory> <run-id>.

	software package

	The same as a distribution package.

	unpacker

	A plugin for the reprounzip component that reproduces an experiment from a .rpz bundle. The unpackers chroot, directory, and installpkgs are distributed with reprounzip; others come in separate packages (reprounzip-docker and reprounzip-vagrant). See Unpackers.

 Index

Index

 B
 | C
 | D
 | R
 | S
 | U

B

 	
 	bundle (or pack)

C

 	
 	configuration (file)

D

 	
 	distribution package

R

 	
 	run

S

 	
 	software package

U

 	
 	unpacker

 Trace Database Schema

Trace Database Schema

The database contains three tables: processes, opened_files, and executed_files.

processes

This table contains information about all the processes. A process is identified by Linux as a pid (process id), and is either a thread or a full-fledged process.

Note that processes are different from programs, and there is no one-to-one relationship with executions. A process is created by clone(2) [https://linux.die.net/man/2/clone] or fork(2) [https://linux.die.net/man/2/fork] and not necessarily followed by execve(2) [https://linux.die.net/man/2/execve]. By contrast, a program can change its image by calling execve(2) without creating new processes (i.e., without changing pid).

Each entry in the processes table has the id of its parent, i.e. the process that created it by calling clone(2) or fork(2), except the original process that reprozip created, for which parent is NULL. There is thus exactly one process with a NULL parent per run stored in the bundle.

CREATE TABLE processes(
 id INTEGER NOT NULL PRIMARY KEY,
 run_id INTEGER NOT NULL,
 parent INTEGER,
 timestamp INTEGER NOT NULL,
 is_thread BOOLEAN NOT NULL,
 exitcode INTEGER
);

opened_files

This table contains information regarding the files accessed by the processes. Note that a failed access (e.g.: trying to read a non-existing file, permission denied, etc.) is not logged. A single path might appear several times, even if accessed by the same process.

Each file has a numerical id, the canonical path name, the process that accessed it (from which you can get the executable by cross-referencing processes, also using the timestamp), and the mode.

CREATE TABLE opened_files(
 id INTEGER NOT NULL PRIMARY KEY,
 run_id INTEGER NOT NULL,
 name TEXT NOT NULL,
 timestamp INTEGER NOT NULL,
 mode INTEGER NOT NULL,
 is_directory BOOLEAN NOT NULL,
 process INTEGER NOT NULL
);

The mode attribute is a binary OR of the following values (accessible from reprounzip.common):

FILE_READ = 0x01
FILE_WRITE = 0x02
FILE_WDIR = 0x04
FILE_STAT = 0x08
FILE_LINK = 0x10

executed_files

This is a variant of opened_files for file executions, i.e. execve(2) [https://linux.die.net/man/2/execve] calls. There is no mode here (file is opened for reading by the call) and they are never directories; however, workingdir, argv (command-line arguments) and envp (environment variables) are added. argv is a list of arguments separated by null bytes (0x00) [1], and envp is a list of VAR=value pairs separated by null (0x00) bytes [1]. Note that, again, failed executions (execve returns) are not logged.

CREATE TABLE executed_files(
 id INTEGER NOT NULL PRIMARY KEY,
 name TEXT NOT NULL,
 run_id INTEGER NOT NULL,
 timestamp INTEGER NOT NULL,
 process INTEGER NOT NULL,
 argv TEXT NOT NULL,
 envp TEXT NOT NULL,
 workingdir TEXT NOT NULL
);

[1]
(1,2)
Note that Python’s sqlite3 lib is affected by bug 13676 [https://bugs.python.org/issue13676] up to Python 2.7.3, which prevents it from reading text or blob fields with embedded null bytes.

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_images/ache-processes.png
/home/vagrant/ache/build/install/ache/bin/ache (1)

fork+exec fork+exec fork fork+exec \fork fork+exec fork

fust/bin/basename (2) /binfuname (3) /bin/bash (4) fust/bin/dirname (5) /bin/bash (6) fust/bin/which (7) /bin/bash (8)

fust/binjava (9)

thread thread Thread thread thread thread thread thread

fusr/bin/java (10) fusr/bin/java (11) fusr/bin/java (12) Jusr/bin/java (13) fusr/bin/java (14) fusr/bin/java (15) fusr/bin/java (16) fusr/bin/java (17)

_static/file.png

_images/digits-io.png
home/remram/pkgs/ipython/bin/python (1)

home/remram/pl

ipython/bin/python (2)

home/remram/pl

python/bin/python (3)

home/remram/pl

ipython/bin/python (4)

_static/minus.png

_static/down.png

_images/reprounzip-qt-1.png
XTI R unpocked experiment

Exporment deeciry. [Ampiss Bowse
Unpacker docker
npututp s Manago fes
Funs: Sooct At
Doseloct
Eovato prvieges: 0 B
U
onatiod
X1t dsplay: -
Detac: s background containar and eave f uving

Puncxperment Dosioy unpackad oxpoimont

_images/reprounzip-qt-linux-register.png
Do you want to set ReproUnzip as the default to open .rpz files?

® No

_images/reprounzip-qt-manageFiles.png
name: [arg1]
[arg0
[10] train_targets.npy Path: barn/02_classifier.py |

[arg2
[10] predicted_targets.npy
[o] confusion_matrix.npy
[arg3

[10] train_data.npy

[10] classifier.pkl

[10] test_data.npy

[10] test_targets.npy

Current: (original
Upload a replacement
Download to disk

Reset file

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 ReproZip’s Documentation

 		
 Why ReproZip?

 		
 Installation

 		
 Linux

 		
 Required Software Packages

 		
 Installing reprozip

 		
 Installing reprounzip

 		
 Mac OS X

 		
 Binaries

 		
 Required Software Packages

 		
 Installing reprounzip

 		
 Windows

 		
 Binaries

 		
 Required Software Packages

 		
 Installing reprounzip

 		
 Anaconda

 		
 Using reprozip

 		
 Tracing an Experiment

 		
 Editing the Configuration File

 		
 Creating a Bundle

 		
 Further Considerations

 		
 Packing Multiple Command Lines

 		
 Packing GUI and Interactive Tools

 		
 Capturing